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Abstract. The various relations between q-deformed oscillators algebras and the q-deformed su(2) algebras
are discussed. In particular, we exhibit the similarity of the q-deformed su(2) algebra obtained from q-
oscillators via Schwinger construction and those obtained from q-Holstein-Primakoff transformation and
show how the relation between su√

q(2) and Hong Yan q-oscillator can be regarded as an special case
of Inöuë- Wigner contraction. This latter observation and the imposition of positive norm requirement
suggest that Hong Yan q-oscillator algebra is different from the usual su√

q(2) algebra, contrary to current
belief in the literature.

1 Introduction

Since the Macfarlane-Biedenharn (MB) papers [1,2] on the
construction of suq(2) algebra from the q-deformed oscil-
lator algebra à la Schwinger way, there are by now many
different versions of the q-deformed algebra. However all
these q-deformed oscillator algebras are not Hopf algebras
except the Hong Yan type and its generalization [3,4]. It
should be stressed here that via the Schwinger construc-
tion, it is only the ‘algebraic’ aspect of the Hopf algebra
suq(2) which can be expressed in terms of the q-oscillator
algebra; the co-algebraic structure of suq(2) cannot be eas-
ily obtained from the q-oscillator algebra granted that the
latter possesses a Hopf structure.

It has been claimed [5,6] that Hong Yan (HY) Hopf
algebra is the same as the suq(2) Hopf algebra and a for-
mal relation has been established for the generators of
su√

q(2) and the HY oscillator algebra. Nevertheless if we
impose positive norm requirement for the states, then at
the representation level, the identification breaks down for
some values of |q| = 1, since for these values, the posi-
tive norm requirement does not hold. In fact, the positive
norm requirement [7] is in conflict with the truncation
condition [6] imposed on the states of the oscillator so
as to get finite multiplets for su√

q(2). In other words,
for |q| = 1 (q = eiε, ε arbitrary) HY oscillator algebra
is different from su√

q(2) algebra. Furthermore, although
su√

q(2) has a q → 1 limit at the coalgebra level, the coal-
gebraic structure for HY fails in this limit. In the following
section, we summarize the q-Schwinger construction of q-
deformed su(2) algebra in terms of a pair of q-oscillator
algebras; different q-oscillator algebras lead to different q-
deformed su(2) algebras. Most authors prefer to set the
Casimir in their q-Schwinger construction to zero. How-

ever, one sometimes find it convenient and essential to
consider non-zero Casimir for some physical applications
[7,8]. A natural generalization with two additonal param-
eters α and β is also provided. In Sect. 3, we exhibit re-
sults for q-Holstein Primakoff (HP) transformation with
non-zero Casimirs for the MB and HY oscillators. The re-
sults are similar to those presented in Sect. 2. Different
contractions of q-deformed su(2) algebras to the various
q-oscillator algebras are elucidated in Sect. 4. In particu-
lar, we show that the relation between su√

q(2) and HY
q-oscillator algebras obtained in [5,6] can be regarded as
a form of contraction. In the last section, we point out ex-
plicitly that at the representation level the usual su√

q(2)
algebra is not the same as the HY q-oscillator algebra.

We recall that the quantum universal enveloping al-
gebra, Uq(su(2)), was first studied by Skylanin [9] and
independently by Kulish and Reshetikhin [10]. This al-
gebra has been applied extensively to the study of the
eight vertex models, the XXZ ferromagnetic and anti-
ferromagnetic models and the sine-Gordon models. The
universal enveloping algebra, Uq(su(2)) is generated by
three operators, J± and J0 satisfying the commutation
relations

[J0, J±] = ±J±, (1)
[J+, J−] = [2J0], (2)

where [x] denotes
qx − q−x

q − q−1 .

A generalized q-deformed su(2) algebra [12,13] has
also been proposed and the operators Ĵ± and Ĵ0 satisfies
a modified commutation relations

[Ĵ0, Ĵ±] = ±Ĵ±, (3)
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[Ĵ+, Ĵ−] = Φ(Ĵ0(Ĵ0 + 1)) − Φ(Ĵ0(Ĵ0 − 1)), (4)

= Ψ(Ĵ0) − Ψ(Ĵ0 − 1), (5)

where the functions Φ(Ĵ0) and Ψ(Ĵo) are some suitably
chosen functions of Ĵ0. It has been shown in ref [13] that
the imposition of hermiticity condition requires the gener-
alized q-deformed su(2) to assume the form given in (5).

2 q-Schwinger construction

Traditionally, the algebra su(2) can be realized in terms
of a pair of bosonic creation and annihilation operators of
a harmonic oscillator using the Schwinger construction. A
q-analogue of this construction is given by MB [1,2,11].
The operators a, a† and N of the q-deformed oscillator
algebra obey the relations

[N, a†] = a†, [N, a] = −a, (6)

aa† − q−1a†a = qN , (7)

C1 = qN (a†a− [N ]). (8)

This oscillator algebra does not appear to possess a Hopf
structure. But a Hopf structure is possible for another ver-
sion of the q-deformed oscillator which was first proposed
by HY [3] in which the operators a, a† and N satisfy (8a)
and (8b) and

[a, a†] = [N + 1] − [N ] (9)

C2 = a†a− [N ]. (10)

In general, these two versions of the q-deformed oscillator
algebras are not equivalent [4] although the two algebras
coincide on the usual ‘Fock’ space basis |n >.

Mathematically, it has always been intrinsically ap-
pealing and insightful to generalize a particular mathe-
matical structure as much as possible [14–16]. One possi-
ble generalization of the MB algebra is to introduce two
additional parameters α and β. One then defines the gen-
eralized MB (GMB) algebra [14] with the relations in (8b)
and (8c) replaced by

aa† − qαa†a = qβN , (11)

C3 = q−αN (a†a− [N ]α,β), (12)

where [x]α,β =
qαx − qβx

qα − qβ
is a generalized q-bracket. A

similar generalization for the HY oscillator (GHY) gives

[a, a†] = [N + 1]α,β − [N ]α,β (13)

C4 = a†a− [N ]α,β . (14)

We next consider realization of the q-deformed su(2)
algebra constructed from two independent q-oscillators,
a, a†, Na and b, b†, Nb. Following [1,2,11]

J+ = a†b, J− = b†a, (15)

J0 =
1
2
(Na −Nb), C =

1
2
(Na +Nb). (16)

Using the algebra defined in (8), we easily check that the
operators J± and J0 obey the commutation relations:

[J±, J0] = ∓J± (17)
[J+, J−] = {−C1(q − q−1) + 1}[2J0] (18)

Note that if we set C1 = 0, we obtain the result in [1,2].
However, if we try to construct the realization using the
algebra defined in (10), we arrive at the Fujikawa algebra
[17] with (18b) replaced by:

[J+, J−] = [2J0] + C2{[C − J0 + 1]
−[C − J0] − [C + J0 + 1] + [C + J0]}. (19)

This is not the conventional q-deformed su(2) algebra as
defined in (2) unless C2 = 0, which is the case in a Fock
space representation.

Analogous Schwinger construction for the GMB and
GHY algebras given by (12) and (14) can be constructed.
The commutation relations for the operators {J+, J−} for
the the GMB and GHY algebra are respectively

[J+, J−] = {C3(qα − qβ) + 1}q
αNa+βNb − qαNb+βNa

qα − qβ
(20)

and

[J+, J−] = C4{[Nb + 1]α,β − [Nb]α,β − [Na + 1]α,β

+ [Na]α,β} +
qαNa+βNb − qαNb+βNa

qα − qβ
. (21)

Note that when β = −α, the term
qαNa+βNb − qαNb+βNa

qα − qβ

in (20) and (21) becomes [2J0]α,β .

3 q-Holstein-Primakoff transformation

It is well-known that one can realize the undeformed su(2)
algebra nonlinearly with one harmonic oscillator using the
HP transformation. A q-analogue of the transformation
has also been studied [20]. The q-analogue of the HP trans-
formation is defined by the relations

J+ = a†√[2j −N ], (22)

J− =
√

[2j −N ]a, (23)
J0 = N − j, (24)

where j is some c-number.
It can be checked easily that under MB q-deformed

oscillators, the realization (24) leads to

[J0, J±] = ±J±, (25)

[J+, J−] = [2J0] + C1q
−2J0 ; (26)

whereas under HY oscillators, the commutation relations
become

[J0, J±] = ±J±, (27)
[J+, J−] = [2J0] + C2{[2j −N + 1]

−[2j −N ]} (28)
= [2J0] + C2{[j − J0 + 1]

−[j − J0]}. (29)
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It is interesting to compare (26) and (29) with (2) and
(19) respectively.

For the GMB and GHY oscillator algebras defined by
(12) and (14), one can also define the q-analogue of the HP
transformations in the most obvious manner by replacing
the usual q-bracket by its generalized q-bracket. It turns
out that the generalized q-HP transformations are then
given by the relations

J̃+ = q− α+β
2 Na†

√
[2j −N ]α,β , (30)

J̃− =
√

[2j −N ]α,βaq
− α+β

2 N , (31)

J̃0 = N − j. (32)

One easily verifies that under the GMB q-deformed
oscillator, the realization turns out to be given by the
relations

[J̃0, J̃±] = ±J̃±, (33)

J̃+J̃− − qα+β J̃−J̃+

= [−2J̃0]α,β + C3q
−2J̃0β ; (34)

whereas under the GHY algebra, the same computation
leads to the relations

[J̃0, J̃±] = ±J̃±, (35)

J̃+J̃− − qα+β J̃−J̃+

= q−(α+β)N{[2j −N + 1]α,β − [2j −N ]α,β}C4

+[−2J̃0]α,β . (36)

4 Contraction

So far we have tried to construct the q-deformed su(2)
from q-oscillator algebras. A somewhat reverse process,
known as contraction, is possible in general. For the un-
deformed case, we know that the transformation [19]



h+
h−
h0
1h


 =



µ 0 0 0
0 µ 0 0
0 0 1 η

2µ2

0 0 0 1






J+
J−
J0
ξ


 (37)

maps the generators of U(2), J± and J0 with [J, ξ] = 0
under a change of basis to the generators h±, h0 and 1h

such that

[h0, h±] = ±h± (38)
[h+, h−] = 2µ2h0 − η1h (39)

[h, 1h] = 0. (40)

One easily notes that the commutation relations (40) are
well-defined in the limit µ → 0 despite the singularity in
the transformation. For µ → 0 and η → 1, the transformed
algebra in (40) can be mapped isomorphically to the stan-
dard oscillator algebra. This transformation is sometimes
known as the generalized Inönü-Wigner contraction.

The transformation given in (37) allows for a simple
extension to the q-deformed case if one identifies the oper-
ators {h+, h−, h0} as the operators {a†, a,N ′}, the latter

satisfying the HY algebra with N ′ = N +
1
2
. Further one

should also demand that the operators {J+, J−, J0} obey
the q

1
2 -deformed su(2) algebra. In particular, one can eas-

ily work out the commutation relations for [h+, h−] or
equivalently [a†, a] explicitly to get

[h+, h−] = [a†, a]
= µ2[J+, J−]

= µ2 q
J0 − q−J0

q
1
2 − q− 1

2

= µ2 q
h0q

− η

2µ2 ξ − q−h0q
η

2µ2 ξ

q
1
2 − q− 1

2
. (41)

However since the operators {h, h†, h0} or equivalently
{a, a†, N ′} obey the HY algebra, one can also work out
the commutation relation in (41) in terms of the operator
h0. An straightforward computation yields

[h+, h−] = [h0 − 1
2
] − [h0 +

1
2
]

= −qh0 + q−h0

q
1
2 + q− 1

2
. (42)

Consistency requirement for the expressions in (41) and
(42) yields:

µ2

q
1
2 − q− 1

2
q

− η

2µ2 ξ = − 1
q

1
2 + q− 1

2
, (43)

µ2

q
1
2 − q− 1

2
q

η

2µ2 ξ =
1

q
1
2 + q− 1

2
. (44)

It is straightforward to solve (44) for µ and ηξ giving

µ = e−i α′
2 (

q − 1
q + 1

)
1
2 (45)

ηξ = 2e−iα′
(
q − 1
q + 1

)
iα′

ln q
(46)

where α′ = π
2 + `π (` ∈ Z) and we have appropriately

chosen one branch when taking the logarithm of complex
number.

Thus, we observe that the relation obtained in [5,6] be-
tween HY oscillator and su√

q(2) algebra can be regarded
as the q-analogue of the transformation given in (37) if we
write



a+
a
N ′
1


 =




e−i α′
2 (q−1

q+1 )
1
2 0 0 0

0 e−i α′
2 (q−1

q+1 )
1
2 0 0

0 0 1 i
ln q

0 0 0 1






J+
J−
J0
α′1




(47)
in which one easily identifies the quantities µ, η and ξ

in (37) by µ = e−i α′
2 (

q − 1
q + 1

)
1
2 , η =

2ie−iα′

ln q
(
q − 1
q + 1

) and
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ξ = α′. We would like to emphasize again that the oper-
ators J± and J0 in this case obey the q

1
2 -deformed com-

mutation relations in (2) [5,6]. In the limit q → 1, this
transformation is again singular but again the commu-
tation relations for the oscillator algebra are well-defined
and become the undeformed oscillator algebra. Further-
more, for generic q, the coproduct, counit and antipodes
for the q-deformed su(2) carry directly through the trans-
formation, endowing the HY oscillator with a Hopf struc-
ture. This Hopf structure however breaks down in the limit
when q → 1 whereas the Hopf structure of su√

2(2) be-
comes cocommutative in the same limit. From refs [6,7],
it is not difficult to show that the positive norm require-
ment and the truncation condition for the states of the
HY q-oscillator are in conflict with each other. Thus the
HY q-oscillator algebra is not the same as the su√

q(2)
algebra.

The MB oscillator algebra can be shown via the map
a = qN/2A, a† = A†qN/2 to be equivalent to the algebra
Aq with operators {A,A†, N} satisfying

[A,A†] = q−2N (48)
[N,A] = −A (49)

[N,A†] = A†. (50)

In fact, Chaichian and Kulish [20] have shown that the
map

A = lim
s→∞

(q − q−1)
qs

J+ (51)

A† = lim
s→∞

(q − q−1)
qs

J− (52)

N = s− J0 (53)

allows the contraction of suq(2) to the MB q-oscillator
algebra. Note that this contraction clearly lifts the highest
weight representation to infinity so that there exists an
infinite tower of states needed for the oscillator algebra Aq.
Although this contraction does not induce a coproduct for
{A,A†, N}, it admits a coaction Ψ : Aq → Aq ⊗ SUq(2)
given by

Ψ(N) = N − J0, (54)

Ψ(A) = Aq−J0 +
√
q − q−1q−NJ+, (55)

Ψ(A†) = A†q−J0 +
√
q − q−1q−NJ−. (56)

This coaction satisfies the associative axioms namely

(Ψ ⊗ 1) ◦ Ψ = (1 ⊗ Ψ) ◦ Ψ (57)
(1 ⊗ ε) ◦ Ψ = 1 (58)

where ε is the counit. Further, one easily checks that the
homomorphism axiom is consistent, namely

Ψ([x, y]) = [Ψ(x), Ψ(y)] (59)

where x, y ∈ {A,A†, N}. In the framework of Inöue-
Wigner transformation, there seems to be a singular trans-

formation



A
A†
N
1


 =




√
q − q−1

qs
0 0 0

0

√
q − q−1

qs
0 0

0 0 −1 s
0 0 0 1






J−
J+
J0
1


 . (60)

The contraction from suq(2) to MB oscillator algebra oc-
curs in the singular limit s → ∞, but in this case, the
natural coproduct for suq(2) does not survive in this limit.
This contraction is essentially similar to the one proposed
by J. Ng [21]. A different contraction proposed by Celegh-
ini et al [5,22] involves the transformation



B
B†
N
H
ω


 =



η 0 0 0 0
0 η 0 0 0
0 0 −1 η−2 0
0 0 0 2 0
0 0 0 0 η−2







J+
J−
J0
K

log q


 . (61)

where K is the so-called U(1) generator. Under this trans-
formation, the operators {B,B†, N,H} obey in the limit
η → 0 the relations

[B,B†] =
sinh(ωH

2 )
ω
2

(62)

[N,B] = −B, [N,B†] = B†, [H,N ] = 0 (63)
[H,B] = [H,B†] = 0 (64)

This contraction induces a coalgebraic structure inherited
from the original Hopf algebra of suq(2). The algebra gen-
erated by the operators {B,B†, H,N} is not quite the q-
deformed oscillator algebra although we can get the usual
undeformed oscillator in the limit ω → 0.

5 Representations

We can gain some insights into the the linear transforma-
tion which we have encountered in the previous section
by looking more closely at a representation of the HY
oscillator algebra. To obtain a representation of the HY
algebra [6], we note that N commutes with a†a and aa†.
As a result we can construct a vector |ψ0 > which is a
simultaneous eigenstate of N and a†a so that

N |ψ0 > = ν0|ψ0 > (65)

a†a|ψ0 > = λ0|ψ0 > (66)

where ν0 and λ0 are the corresponding eigenvalues. We
shall further assume that the operator N is Hermitian so
that its eigenvalue ν0 is real.

From the eigenstate, |ψ0 >, one can construct other
eigenstates of N by defining

|ψn > = (a†)n|ψ0 > (67)
|ψ−n > = an|ψ0 > (68)
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for some positive integer n. With these definitions, one
easily shows that

a†|ψn > = |ψn+1 > (69)

a†|ψ−n > = λ−n+1|ψ−n+1 > (70)
a|ψn > = λn|ψn−1 > (71)
a|ψ−n > = |ψ−n−1 > (72)
N |ψ±n > = (ν0 ± n)|ψ±n > (73)

where

λn = λ0 +
q

1
2 n − q− 1

2 n

q
1
2 − q− 1

2

qν0+ n
2 + q−ν0− n

2

q
1
2 + q− 1

2
(74)

= λ0 + [n+ ν0] − [ν0]. (75)

Note that the oscillator algebra still admits an infinite
number of states and the representation at this stage is dif-
ferent from Uq(su(2)) whose finite-dimensional represen-
tation requires a highest weight state. One then imposes
a truncation on the tower of states and set a|ψ0 >= 0
giving λ0 = 0 and |ψ−n >= 0 for any n > 0. Let |ψk > be
the highest weight state so that a†|ψk >= 0 with integer
k > 0. Since C2 = a†a− [N ] = aa† − [N + 1], one finds by
considering the action of C2 on |ψk > that the following
condition must be satisfied:

[ν0 + k + 1] = [ν0]. (76)

For real q, k = −1 is the only solution, but this is not ac-
ceptable. However, for complex q with |q| = 1, truncation
is possible. It is not difficult to solve (76) for ν0 in this
case. Writing q = eiε, one can show that for arbitrary ε,
(76) leads to

ν0ε =
−(k + 1)ε

2
+ (`+

1
2
)π, ` ∈ Z (77)

This result needs not be consistent with the condition for
positivity of norms [6,7] which by (75) is

[n+ ν0] − [ν0] ≥ 0 (78)

for all integers n ≤ k. To see this, we substitute (77) into
the left hand side of condition (78) and see that

[n+ ν0] − [ν0] =
(−1)`

sin ε
{cos(

k + 1
2

− n)ε− cos
k + 1

2
ε}

which needs not be positive for arbitrary ε. This means
that for arbitrary ε, we cannot proceed to identify the HY
oscillator algebra with su√

q(2) algebra. To identify the
two algebras, we have to truncate the tower of states of the
HY oscillator algebra. However, truncation and positive
norm requirement can both be satisfied only for certain
value of ε. In short, the HY oscillator algebra and su√

q(2)
algebra are equivalent only for certain q-values.

We wish to thank Prof. Kazuo Fujikawa for many helpful sug-
gestions and discussions.
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